
July 10, 2008 / Vol. 6, No. 7 / CHINESE OPTICS LETTERS 469

Preparing of coherent superposition state in serial

multi-Λ-type system by stimulated Raman adiabatic passage

Qifang Li (oooÛÛÛǑǑǑ) and Ye Kuang (¸̧̧ ���)

School of Physical Science and Technology, Sichuan University, Chengdu 610065

Received November 16, 2007

A scheme for creating an arbitrary coherent superposition of two atomic states in serial multi-Λ-type
system is proposed. This technique with the application of a control field is based on the existence of two
degenerate dark states and their interaction. The mixing of the dark states can be controlled by changing
the relative delay time of the control pulse. One can get any desired superposition by changing the delay
time of the control pulse.
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In recent years, the technique called stimulated Ra-
man adiabatic passage (STIRAP) process has been
intensively studied experimentally, analytically and
numerically[1−10]. In the straightforward population
transfer, the STIRAP has been applied to manipulate
and create coherent state superposition. The original
STIRAP process has thus been utilized to create coher-
ent superposition in three- and four-level systems[1−5],
and to prepare N-component maximally coherent super-
position state[6]. In most cases, the existence of a dark
state is the basis of the adiabatic transfer, which uti-
lizes the eigenstate corresponding to zero eigenenergy.
If the system is prepared in this state at the initial
time, it will remain there during the time of evolution
as long as adiabatic process is maintained. If the adia-
batic state is arranged to go over into the desired state
at the final time, this process provides a smooth and
efficient population transfer between the states. And the
extension of STIRAP has been developed quickly. For in-
stance, tripod-STIRAP[2,4], fractional-STIRAP[7,8], and
other variations of STIRAP[9,10].

In the present work, a scheme to create coherent su-
perposition state of two states in serial multi-Λ-type
system[11] is proposed. Serial multi-Λ-type System has
been studied previously in population transfer[3], molec-
ular vibrational ladder climbing[11,12], and creating co-
herent superposition state[13]. Creating coherent super-
position state can be carried out via fractional-STIRAP
in serial multi-Λ-type system. But all the intermediate
pulses must vanish simultaneously in fractional-STIRAP,
which is very difficult to realize experimentally. But by
using another control laser[2], we can also create coher-
ent superposition state. The advantage of this method
is that we do not need to control the laser pulses vanish-
ing simultaneously, instead, we only need to control the
delay time of control pulse which is much easier to real-
ize experimentally. This method has been used to create
superposition state in three-level Λ-type system[2]. In
this letter, we extend the method to serial multi-Λ-type
system, and our goal is to create superposition state of
initial state and final state of Λ-type system. The results
show that the final superposition state can be controlled
by adjusting the time of the pulses (the relative delay of

the control pulse).
Firstly, we consider the five-level Λ-type system shown

in Fig. 1. The atoms are assumed to be initially in state
|1〉. The time-dependent Schrödinger equation for this
system can be written as

d

dt
C(t) = −iW (t)C(t), (1)

where C(t) is a column vector, whose components are the
probability amplitudes Cn(t), and the evolution matrix
W (t) has the form

W (t)

=
1

2















0 P1(t) 0 0 0 0
P1(t) 0 S1(t) 0 0 0

0 S1(t) 0 P2(t) 0 0
0 0 P2(t) 0 S2(t) Q(t)
0 0 0 S2(t) 0 0
0 0 0 Q(t) 0 0















,(2)

where P1(t), P2(t), S1(t), S2(t), and Q(t) are the time-
dependent Rabi-frequencies of the pump, Stokes and con-
trol pulses, respectively. We assume P1(t), P2(t), S1(t),
S2(t), andQ(t) to be real without loss of generality. Then
the eigenvalue of this system is

λ = 0,±Ω1(t),±Ω2(t), (3)

where

Ω1(t) =
√

P1(t)2 + S1(t)2, (4)

Ω2(t) =
√

P2(t)2 + S2(t)2 +Q(t)2. (5)

Fig. 1. Five-level Λ-type system. P1 and P2: pump pulses;
S1 and S2: Stokes pulses; Q: the control pulse.
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The analysis of the system is simplified by introducing
a set of adiabatic states Φk(t). There exist two degen-
erate dark states with null eigenvalue and no component
of atomic states ψ2 and ψ4. And the two corresponding
degenerate dark states are

|Φ1〉 = sinϕ cos θ|1〉 − sinϕ sin θ|3〉 + cosϕ|5〉, (6)

|Φ2〉 = cosϕ cos θ sinα|1〉 − cosϕ sin θ sinα|3〉

− sinϕ sinα|5〉 + cosα|6〉, (7)

where

tan θ =
P2(t)

S2(t)
, tanϕ =

P1(t)
√

P 2
2 (t) + S2

2(t)

P1(t)S2(t)
, (8)

tanα =
Q(t)

√

P 2
1 (t) + S2

1(t)
√

P1(t)2P2(t)2 + S1(t)2S2(t)2 + P1(t)2S2(t)2
.

(9)

Because the proposed technique is based on the exis-
tence of two degenerate dark states and their interaction,
we do not write remaining eigenvectors Φ3, Φ4, Φ5, and
Φ6. And in the adiabatic limit, the nonadiabatic cou-
pling of dressed states Φ1(t) or Φ2(t) to the other dressed
states can be neglected, only the transition between the
degenerate dressed states Φ1(t) and Φ2(t) is important.
The two degenerate adiabatic states Φ1(t) and Φ2(t) do
not contain states ψ2 and ψ4.

The desired pulse sequence to create an arbitrary su-
perposition of ψ1 and ψ5 will be designed so that the two
degenerate dark states correspond, for t → ±∞, to bare
atomic states:

Initial stage : ψ1 → Φ1, (10)

Interaction stage : Ψ(t) → cosΘ∞Φ1 + sin Θ∞Φ2, (11)

Final stage : Φ1 → ψ1, Φ2 → ψ5, (12)

The result of the sequence state :

Ψ(t→ ∞) = cosΘ∞ψ1 + sin Θ∞ψ5, (13)

where Θ∞ is the asymptotic mixing angle, and this an-
gle determines the asymptotic superposition coefficients.
From Ref. [2] we know

Θ∞ =

∫ t

−∞

dτQϑ̇ (τQ) sinϕ(τQ), (14)

where τQ is the delay time of the control pulses relative
to the pump and Stokes pulses.

Initially the system will evolve from ψ1 to Φ1, and
because of the coupling of Φ1 and Φ2, it will finally end
up with superposition state of ψ1 and ψ5. For example,
to generate equal superposition state, first to evolve ψ1

into Φ1, we should have θ = 0 and ϕ = π/2, which means
that S1(t) precedes P1(t), and S2(t) precedes P2(t) based
on Eq. (8); at the end of interaction, to get superposition
state of ψ1 and ψ5, the mixing angles should be θ = 0,

ϕ = π/2, and α = π/2, which means that P2(t) vanishes
earlier than S2(t), P1(t) vanishes earlier than S1(t), and
S2(t) vanishes earlier than Q based on Eqs. (8) and (9).
We illustrate the procedure in Fig. 2. Figure 2(a) shows
the pulses and Fig.2 (b) shows the resulting populations.
We can see that the initial bared atomic state ψ1 is
turned into an equal superposition state of ψ1 and ψ5.

We can also generate any desired superposition by vary-
ing the delay time of the control pulse. From Eq. (14), we
can get any desired superposition by altering the mixing
angle Θ∞ which is governed by the relative delay time
of the control pulse. So by varying the delay τQ among
the control pulse and the pump and Stokes pulses, we can

Fig. 2. (a) Example of pulses for coherence generation.
AP1

= 15, AP2
= 8, AS1

= AS2
= 6, AQ = 15, TP1

= 120,
TP2

= 1.2TP1
, TS1

= 1.5TP1
, TS2

= 1.6TP1
, and TQ = 1.9TP1

,
τQ = 0.66TP1

, τP1
= τP2

= 0.3TP1
; (b) time evolution

of populations as produced by these pulses. The popu-
lations of excited stated states 2 and 4 remain zero. Ai

(i = P1, P2, S1, S2, Q) are the Rabi-frequencies of the pulses,
and Ti (i = P1, P2, S1, S2, Q) are the widths of the pulses.

Fig. 3. Asympotic mixing angle Θ∞ as a function of delay
time τQ of the control pulse. Curve 1, 2 and 3 show AQ = 18,
15, and 13, respectively.
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produce a range of superposition. Figure 3 shows the
mixing angle Θ∞ as a function of the delay time τQ. It
can be seen that the mixing angle Θ∞ ranges from −0.1
to −0.9 as the delay time τQ changes, and Θ∞ is not
very sensitive to variations of the control-pulse ampli-
tude. Then it is possible to choose the delay time to
produce any desired superposition.

This method can be extended to the seven serial multi-
Λ-type system, in which the control pulse Q(t) couples
the intermediate state ψ6 to a eighth state ψ8. The sys-
tem has two dark states:

Φ1 = sinα sinβ cos γ |1〉 − sinα sinβ sin γ |3〉

+ sinα cosβ |5〉 − cosα |7〉 , (15)

Φ2 = cosα sinβ cos γ sin θ |1〉 − cosα sinβ sin γ sin θ |3〉

+ cosα cosβ sin θ |5〉 + sinα sin θ |7〉 − cos θ |8〉 , (16)

tanα =
S3

√

S2
1S

2
2 + P 2

1P
2
2 + P 2

1 S
2
2

P1P2P3
,

tanβ =
S2

√

S2
1 + P 2

1

P1P2
, tan γ =

P1

S1
, (17)

tan θ =
Q

√

S2
1S

2
2 + P 2

1P
2
2 + P 2

1 S
2
2

√

S2
1S

2
2S

2
3 + P 2

1P
2
2 S

2
3 + P 2

1 S
2
2S

2
3 + P 2

1P
2
2P

2
3

.

(18)

In order to get the equal superposition state of ψ1 and
ψ7, we must achieve α = π/2, β = π/2, and γ = 0 ini-
tially, α = π/2, β = π/2, γ = 0 and θ = π/2 at the end
of interaction, which requires that the Stokes pulses ar-
rive earlier but vanish later than the corresponding pump
pulses, and the control pulse arrives and vanishes last.

So for any serial multi-Λ-type system, we can create
any superposition state of ψ1 and ψn if the control pulse
Q(t) couples the intermediate state ψn−1 to state ψn+1.

All the Stokes pulses arrive earlier but vanish later than
the corresponding pump pulses, and the control pulse ar-
rives and vanishes last.

In conclusion, we have analytically and numerically ex-
plored creating superposition states of ψ1 and ψn in serial
multi-Λ-type system. By using a controlled field, we have
two degenerate dark states. Through the interaction of
these two states and the proper design of laser pulse se-
quence, we can create arbitrary superposition state by
only controlling the pulse delay time. This is much eas-
ier to realize experimentally than fractional-STIRAP.

Q. Li’s e-mail address is lqfanna@163.com.
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